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Abstract

In this study, we experimentally explore the impact of AI as a supportive tool for players
in a two-player trust game. The game begins with the trustee sending a message to the
trustor. In certain scenarios, the trustee is aided by the large language model (LLM)
ChatGPT in composing this message. In other scenarios, the trustor uses AI to interpret
the message from the trustee, or both players may have access to AI assistance. Our
findings indicate that when the trustee utilizes AI as a helper, it enhances cooperation
with the trustor. Interestingly, this improvement in cooperation is not attributed to AI’s
superior messaging skills. Instead, when the trustee has AI assistance, it may encourage
the trustor to scrutinize the trustee’s message more closely. The detailed scrutiny by
the trustor, and potentially the trustee’s awareness of this scrutiny, aligns the beliefs
of the trustor and the trustee, thereby fostering an environment that encourages the
development of trust.
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1 Introduction

Trust is a cornerstone in various socioeconomic activities, including partnership formations

and financial transactions, where it transcends mere contractual obligations. It is vital

in relationships ranging from personal bonds, like those between spouses, to professional

associations, such as the lawyer-client dynamic, procurement agencies and contracted firms,

and collaborations between researchers and participants in scientific studies (Charness and

Dufwenberg, 2006). Extensive research demonstrates its significance in several financial

dealings: it influences stock market participation (Guiso et al., 2004, 2008), affects consumer

credit (Brown et al., 2019), determines the use of investment advisers (Gurun et al., 2017),

and helps foster healthy lending relationships between lenders and borrowers in the credit

markets (Fisman et al., 2017, Hyndman et al., 2024).

Building trust relies on successful communication among involved parties. It is particularly

dependent on the ability of the trustee to convince the trustor to place their trust in them.

This becomes challenging when the communication is non-binding and the interactions are not

regulated by formal agreements. Existing experimental studies have shown that a certain type

of communication, namely promises, can promote trust. This can occur through two main

channels: guilt aversion, where the trustee experiences guilt for not fulfilling the trustor’s

expectations (Charness and Dufwenberg, 2006), and promise-keeping, where the trustee feels

remorse for not honoring their promises (Vanberg, 2008).

In the era of artificial intelligence, large language models (LLMs) like the Generative Pre-

trained Transformer (GPT) have become integral to human communication.1 These models

assist in various tasks such as drafting emails, improving academic papers, financial reports,

and other written materials.2 This raises a pertinent question: what role can AI play in the

trust-building process between a trustor and a trustee? Understanding this role is crucial

1GPT is created by OpenAI, significantly influencing the field of natural language processing (OpenAI,
2022, 2023b). Brown et al. (2020) show that ChatGPT can produce texts with such remarkable accuracy and
fluency that it closely resembles human writing, making it challenging for human evaluators to differentiate
between text generated by GPT and that authored by humans.

2In addition, LLMs have shown remarkable capabilities across diverse areas. They are capable of creating
computer code, as demonstrated by Chen et al. (2021), and solving university-level mathematics problems
(Drori et al., 2022).
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for practical applications. For instance, in a bank loan application, a borrower might use AI

to compose their application, while the lender might use AI for interpreting the application.

The advantages of AI in this context are clear: it saves time for both parties, enhances the

clarity and substance of the borrower’s application, and helps the lender quickly understand

the key points. However, AI also has potential drawbacks. It could diminish the authenticity

of the borrower’s application, leading the lender to question its veracity. Moreover, if the

borrower heavily relies on AI, they might feel less committed to the content produced by the

AI, posing a risk to the lender.

This study aims to explore the impact of AI on trust-building through communication in

a controlled experimental setup. We use a two-player binary choice sequential trust game,

as described in Charness and Dufwenberg (2006), where Player A (the trustor) makes the

first move, followed by Player B (the trustee). Before the game begins, Player B is allowed

to send a free-form message to Player A. The experiment is structured as a 2x2 design. In

one aspect, we either provide or withhold AI as a tool for Player B to aid in composing

their message. In the other aspect, we either provide or do not provide Player A with AI

to assist in interpreting Player B’s message.3 The comparison across different treatment

groups enables us to understand the influence of the AI assistant’s presence (for either Player

A or Player B) on the players’ decisions and beliefs. Additionally, analyzing within each

treatment group sheds light on how players leverage AI to support their communication and

decision-making processes.

We find that the presence of AI does not significantly impact the individual choices of the two

players. This result may be attributed to several factors. When trustees receive AI assistance,

they are more likely to send a “promise” message to the trustor but are less likely to honor a

“promise” if it is suggested by AI. When trustors receive AI assistance, they closely follow

the suggestions from their AI assistants, who consistently remind them to choose cautiously.

However, we observe a significant increase in the frequency of cooperation between the trustors

3We employ the GPT-3.5-turbo model (OpenAI, 2023a) in the experiment. We carefully design prompts
to ensure AI fully comprehends the trust game and understands its role as an assistant for a specific player in
the game during the communication phase. See OpenAI (2023c) for guidance on prompt design.
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and the trustees when trustees have access to AI. This outcome can be attributed to trustors

becoming more vigilant, realizing that messages from trustees might be partially or fully

generated by AI. This heightened scrutiny by trustors, combined with trustees’ awareness of

being closely examined, may create a mutual understanding and alignment of expectations,

thereby fostering an environment where trust can thrive.

The paper is organized as follows. Section 2 provides the experimental design and proposes

the main hypotheses. Section 3 analyzes the experimental results and test the hypotheses.

Section 4 concludes.

Literature Review

With its remarkable ability to comprehend and produce language akin to humans, social

scientists are developing a growing interest in examining machine-learned large language

models. Utilizing approaches common to economic and psychological research, such as surveys

and laboratory-style experiments, has proven useful in analyzing whether AI mirrors human

behavior in individual decision-making tasks as well as in strategic interactions. See, for

example, Aher et al. (2023), Argyle et al. (2022), Bybee (2023), Brand et al. (2023), Brookins

and DeBacker (2023), Chen et al. (2023), Fan et al. (2023), Guo (2023), Hagendorff (2023),

Horton (2023), Kosinski (2023), Lorè and Heydari (2023), Ma et al. (2023), Phelps and

Russell (2023), Engel et al. (2024), Leng and Yuan (2023), Strachan et al. (2024), among

many others. In these studies, AI serves as the primary subject of investigation, as opposed

to humans. A separate strand of research focuses on experiments involving human interaction

with machines or AIs, specifically to ascertain whether human responses differ as opposed to

interaction with other humans, whether AI players outperform their human counterparts,

and whether AI and humans would generate any principal-agent type conflict (Bauer et al.,

2023, Cohn et al., 2022, de Mello et al., 2016, Phelps and Russell, 2023, LaMothe and Bobek,

2020, Laudenbach and Siegel, 2024, Schniter, 2024, Dvorak et al., 2024).

Contrasting with the above-mentioned literature, our paper still focuses on human interactions

where AI assumes the role of an assistant. Several other papers belong to the same category

as ours. For example, in Harris et al. (2023), the sender can acquire information about the
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receiver from an AI oracle in a Bayesian persuasion context. Bai et al. (2023) considers

whether the first mover would take advice from an AI in a two-player centipede game.

Serra-Garcia and Gneezy (2023) find that algorithmic tools help people detect deception in a

classic TV game show. To the best of our knowledge, our study is the first to explore the

impact of AI in a trust game with communication played by human players.

Our research adds to the discussion on algorithm aversion and trust in AI (Glikson and

Woolley, 2020). The low number of subjects directly adopting the AI-suggested messages in

our experiment confirms the common belief that people often mistrust algorithmic advice,

even when it’s advantageous to follow it (Dietvorst et al., 2015). However, it’s important to

note that our observations are influenced by two key factors. 1) People generally tend to place

greater trust in their own judgment compared to that of others. Our experimental design

does not allow us to determine whether the low adoption of AI-recommended messages is due

to aversion to AI or excessive confidence in one’s own judgment.4 2) As pointed out by Logg

et al. (2019), individuals tend to be more receptive to algorithmic advice in areas where there

is a clear and measurable external standard of accuracy, such as making investment decisions

or predicting sports outcomes. In contrast, AI’s suggestions for interpersonal communication

are less easily quantifiable, making it reasonable to assume that participants in our experiment

rely more heavily on their own judgment in such cases.

Finally, an increasing number of economic studies have focused on understanding the impacts

of machine learning and artificial intelligence on socioeconomic phenomena, covering diverse

areas like labor force participation, wage disparity, inequalities in education and health care,

market competition, consumer privacy, economic growth, and political engagement. See for

example, Acemoglu (2022) and Capraro et al. (2024). Our paper contributes to this literature

by examining AI’s applicability in partnership formation and financial transactions.

4Our post-experiment survey elicited overall trust in AI from the subjects. However, we did not find
evidence that subjects who chose not to adopt AI-recommended messages were more averse to AI compared
to other subjects.
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2 The Experiment

2.1 Experimental Design

The objective of this study is to explore the potential of AI assistants in fostering trust dynam-

ics between human participants. To accomplish this goal, we conducted an online experiment

based on the classic two-player trust game introduced by Charness and Dufwenberg (2006),

by allowing the second player to communicate with the first player via a pre-game message.

This experimental setup enables us to investigate whether the presence of AI assistance

influences the trust-building process, via the pre-game message, between participants.

In certain treatments of our experiment, Player B, the trustee, is presented with an AI

assistant interface before the commencement of the game. The AI interface allows Player B

to compose and send a message to Player A, the trustor, prior to the initiation of gameplay.

It is important to note that any message sent by Player B occurs before the actual gameplay

begins. A depiction of player B’s interface, including the game tree, can be seen in Figure 1.

Outcomes are shown in the order of (πA, πB).

To maximize data collection and ensure simultaneous decision-making by both players, we

employed the strategy method (Selten, 1967). Following each player’s decision, Player A is

prompted to indicate their beliefs regarding Player B’s choice, while Player B is asked to

provide their own beliefs about Player A’s perceived decision. Subsequently, both participants

are presented with a Holt-Laury quiz (Holt and Laury, 2002) to assess their risk preferences.

Additionally, a demographic survey was administered to gather information on participants’

perceptions and prior experience with AI technology.

2.1.1 Treatment Design

To investigate the impact of AI assistance on players’ payoffs in the trust game, we imple-

mented a 2 × 2 treatment design, consisting of four distinct treatments. Each treatment

explored various combinations of AI presence and absence, shedding light on the role of AI in

participants’ decision-making processes and outcomes.
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Figure 1: Screenshot of player B’s screen when they are able to use AI. Player A sees a similar tree.

• Benchmark: Neither player has AI. Player B can choose to send a single message to

Player A or refrain from doing so.

• OnlyA: Player A has AI to interpret Player B’s (potential) message and receive advice

on subsequent actions.

• OnlyB: Player B has AI to assist in crafting a message to Player A. If Player B opts

to send a message, they must first interact with the AI.

• Both: Both players have access to AI assistance, following the functionalities described

above.
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In all treatments, Player B’s interaction with AI, if applicable, precedes any communication

with Player A. Participants have the option to engage in dialogue with the AI before deciding

whether to send a message to Player A. It is crucial to note that all participants are aware of

the presence and function of AI throughout the experiment.

2.1.2 Prompt Design

Creating an AI assistant using a natural language processor like ChatGPT involves crafting a

prompt that guides the assistant in generating responses. However, designing a prompt that

effectively handles a wide range of inputs is more of an art than a science. Our experimentation

with ChatGPT (specifically gpt-3.5-turbo) revealed certain challenges and considerations

that influenced the development of robust prompts for our study.

We observed that ChatGPT exhibited difficulties in handling sequential logic and tended

to perform more reliably with shorter prompts. Moreover, we noted instances where the

assistant suggested creative solutions, such as proposing the signing of a contract to establish

a binding promise, which were beyond the scope of our experimental setting.

In light of these observations, we refined our prompts by incorporating the following principles:

1. We presented the trust game in its normal form, as the sequential form did not

strategically differ from its normal counterpart given the strategy method employed in

our experiment.

2. We omitted the description of probabilistic outcomes resulting from (In, Roll) in

the game for Player B’s AI only and instead provided ChatGPT with the expected

outcomes.5

3. We explicitly instructed ChatGPT not to propose side deals or disclose players’ personal

information.

4. We refrained from including higher-order beliefs for the AI assistants. Specifically,

Player B’s AI did not possess knowledge of the existence of Player A’s AI.

5We still keep the probabilistic outcomes resulting from (In Roll) in the game for Player A’s AI because
we want the AI is able to remind Player A to take risks into consideration.
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The full prompts used in our study can be found in Appendix A.3.

2.2 Experimental Procedure

A total of 240 subjects, 30 pairs per treatment, were recruited from to participate in this

experiment. On average, subjects spent 15 minutes in the experiment and were paid a $5

show up fee and earned an additional $8.36 during the experiment. The experiment was

programmed using oTree (Chen et al., 2016) and ChatGPT version gpt-3.5-turbo. It was

implemented on Prolific.

During the online experiment, subjects were continuously recruited and dynamically assigned

roles and partners to play the game with to minimize subject wait time. Subjects read

instructions then were assigned their role. They then took a quiz to ensure they understood

the payoff structure before getting paired with a partner and playing the game. An example

of the experimental instruction can be found in Appendix A.4.

2.3 Hypotheses

In this section, we lay out the main hypotheses that we tested in the experiment.

Hypothesis 1: When player B has access to an AI, player A will play ‘In’ more frequently.

We hypothesize that using an AI will result in player B sending a message that is more likely

to elicit trust from player A.

Hypothesis 2: When player A has an AI assistant, they will play ‘In’ less frequently.

We hypothesize that an AI assistant for player A will result in more conservative decisions

from player A as the AI may call attention to the risk of playing ‘In’ and player B playing

their dominant strategy: ‘Don’t Roll’.

Hypothesis 3: When player B has an AI assistant, they will be more likely to promise to

choose ‘Roll’.
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Player B’s AI assistant is instructed to help it’s user maximize it’s payoff, which means the

AI should be tying to help player B convince player A to play ‘In’. In instances where Player

B didn’t initially make a promise, their AI might suggest it’s user making a promise.

Hypothesis 4: When player B’s message to player A contains a promise which originated

from the AI player B is less likely to honor the promise.

Player B may feel a decrease in the cost of breaking a promise if the promise came from the

AI. Consequently, they may be less likely to honor a message that came form the AI.

Hypothesis 5: The presence of AI, both for player A and for player B, will increase the

probability of achieving a cooperative outcome (In, Roll).

(In, Roll) leads to the highest total payoff for the two players. We expect that the AI should

help communicate (when player B has AI) and/or derive (when player A has AI) player B’s

intentions, so that it helps coordinate cooperative trustors and cooperative trustees.

3 Results

3.1 Treatment Effects

To investigate the influence of AI assistance on outcomes, Figure 2 presents the decisions

made by each player when (i) neither player receives AI assistance (baseline), (ii) player A

receives AI assistance but not player B, (iii) player B receives AI assistance but not player A,

and (iv) both players receive AI assistance.

In the benchmark treatment, player A chooses ‘In’ 36.7% of the time. This rate increases to

43.3% once player B has the option to use AI. Conversely, in both treatments where player A

receives input from AI, 40% of trustors choose ‘In’ whether or not player B has AI. These

results suggest the presence of AI has a negligible impact on player A’s choices.

10



Figure 2: The percentage of observations in each treatment where player A chooses ‘In’, player
B chooses ‘Roll’, or both.

We test Hypothesis 1 by pooling treatments based on player B’s access to AI.6 We observe

that player A chooses ‘In’ more frequently when player B has AI (41.67%) than without

AI (38.33%). However, we fail to reject the null (p = 0.606) when testing the difference in

proportions.

Continuing with our analysis of player A’s choices, Hypothesis 2 predicts that player A

will be more conservative when receiving support from AI. Again, we pool treatments based

on access to AI and find that player A chooses ‘In’ 40% of the time with and without AI

support. Thus, we fail to reject the null.

When neither player has AI, player B chooses ‘Roll’ 70% of the time. This result remains

mostly unchanged in treatments where player B receives AI assistance. Sessions where only

player A receives AI assistance stand out with a roll rate of 50% compared to 68.9% across

the other three treatments (p = 0.079). With access to AI being public information within

each group, this suggests the knowledge that only player A will receive guidance from an AI

6XNo AI = {Baseline,Only A} and XAI = {Only B,Both}.
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Certainly Choose Don’t Roll −→ 0
Probably Choose Don’t Roll −→ 0.25
Unsure −→ 0.5
Probably Choose Roll −→ 0.75
Certainly Choose Roll −→ 1

Table 1: Numerical values assigned to elicited beliefs.

assistant may influence player B’s decision.

We refer to the strategy profile (‘In’, ‘Roll’) as the cooperative outcome as it constitutes the

greatest expected collective payoff for each pair. In the benchmark treatment, we observe the

cooperative outcome in 20% of pairs. In sessions where only player A receives AI assistance,

the proportion of cooperative outcomes decreases to 16.7%, suggesting minimal impact.

Conversely, there is convincing evidence that player B’s access to AI improves cooperation.

In treatments where player B has the option to use AI – Only B and Both – we observe

the cooperative outcome in 33.3% and 30% of pairs, respectively. Pooling observations by

player B’s access to AI, we find a 13.34 percentage point increase in cooperative outcomes

when player B receives AI assistance (p = 0.093). Taken together, the disconnect between

individual choices and pair-wise choices across treatments indicates AI assistance may not

significantly impact individual decisions; rather, it helps to coordinate cooperative trustors

with cooperative trustees. This provides support for Hypothesis 5.

We now turn to the impact of AI assistance on beliefs. First-order beliefs (τA) represent

player A’s confidence that player B will choose ‘Roll’. Second-order beliefs (τBA) reflect player

B’s perception of player A’s beliefs. To provide a more intuitive interpretation of results

where higher values correspond with increased trust, we map qualitative responses from the

post-experiment survey to numerical values according to Table 1.

Consistent with existing literature, our findings confirm that beliefs and behavior are closely

interconnected. Specifically, we observe that A is more inclined to choose ‘In’ when they are

confident B will select Roll. As selecting ‘In’ report an average τA of 0.74, translating to a

belief that B will “probably choose Roll.” On the other hand, those choosing ‘Out’ exhibit

reduced trust in B, with a lower average of 0.44. Moreover, Bs who decide to ‘Roll’ have an
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average second-order belief of 0.73, while those who choose ‘Don’t Roll’ show a significantly

lower average τAB at 0.37.

Figure 3 presents average first- and second-order beliefs across the four treatments. In the

benchmark treatment, trustors display an average τA of 0.52, indicating a neutral level of

trust. The inclusion of AI assistance for B increases this average to 0.61. However, this

pattern does not persist across the Only A and Both treatments. When pooling observations

by B’s access to AI, we find an average τA of 0.529 in treatments without access, only slightly

less7 than when B is assisted by AI. In line with the patterns observed in choices, there is

minimal evidence to suggest AI significantly influences A’s beliefs.

Figure 3: Average first-order and second-order beliefs across the four treatments. Confidence
bands are calculated at the 95-percent level.

Second-order beliefs appear to be equally inconsistent across treatments, except in cases where

only A receives AI assistance. In such cases, B’s average τBA is 0.475, markedly lower than

the 0.629 observed across other treatments (p = 0.03). This divergence might be attributed

to the public information that only A can access AI, leading B to form a more pessimistic

perception of A’s beliefs. It is also consistent with the low Roll rate in the only A treatment

7a difference of 0.07.
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compared with the others.

3.2 Message Classification

3.2.1 Player B

We classify messages sent by player B according to the type of message sent and the method

by which it was sent. The type of message that player B sends takes one of the following

values: ‘promise’, ‘asking’, ‘empty’, ‘skip’, ‘fairness’, ‘anti-promise’. Meanwhile, we classify

the method into one of ‘Own’, ‘AI’, ‘Mixed’, ‘Skip’. Each of these classifications is briefly

discussed below, with further details in the appendix.

Message Type

Message type primarily concerns the content of the message. We abstract the message sent

by player B into what player B indicates about player A’s potential move and what player

B expresses about their own intended move. For each of these components, we assign a

tertiary label. For the first component – the piece of the message involving player A’s move –

we assign a label from ∅/In/Out, with ∅ representing no definitive information conveyed.

Similarly, for the second component – on player B’s own move – we assign a label from

∅/Roll/Don’t Roll. This categorizes any message sent by either player B or the AI into one

of 9 pairs. This codification allows us to assign labels to the messages according to Table 2.

Additionally, a visualization of the transformation from player B’s initial message through

the AI to their final message can be found in Appendix Figure A.1, with additional examples

following in panels (a)-(e) of Figure A.2. Note that this assignment is for explicit messages;

when player B opts not to send a message, they are assigned the message type “skip”. Further

details of message-code assignment are left to the appendix.

14



Msg Vec Label

(In, Roll)

Promise(∅, Roll)

(Out, Roll)∗

(In, ∅) Asking

(∅, ∅) Empty

(Out, ∅) Fairness

(In, Don’t Roll)

Anti-promise(∅, Don’t Roll)

(Out, Don’t Roll)

Table 2: Each message sent by player B (or recommended by AI) is encoded as vector which captures what player
B intends to do and what they propose player A should do. Note that (Out, Roll) does not constitute a cooperative
outcome unlike the other Promises. We nonetheless include it in Promise since it demonstrates Player B’s intention
to play Roll. We do not observe any encoded message of (Out, Roll).

We are chiefly interested in the effects of player B promising to play Roll has on choices,

outcomes, and beliefs. We abstract slightly from the notion of a “promise” to any explicitly

expressed intention to play Roll on behalf of player B. On the other hand, if player B

explicitly expresses intent to play Don’t Roll, we label this an “anti-promise”, regardless of

their suggestion as to how player A should play. If player B only indicates an explicit move

that they wish their opponent to play, and does not explicitly provide information about

what they intend to play, then we classify their message as either “Fairness” or “Asking”.

“Asking” is chosen if player B requests that player A play In, without mention of their own

intended move. Conversely, “Fairness” indicates that player B has suggested that player A

play Out, resulting in an egalitarian (“fair”) outcome. In the event that no clear intentions

are sent on behalf of player B, then the “Empty” label is assigned.8

A breakdown of message types for non-skipped messages across all treatments is provided in

Figure 4. The largest share (41%) of sent messages are Promises, with 90% of sent messages

being comprised of Promises, Asking, and Empty messages.

Figure 5 illustrates the distribution of player choices based on player B’s message type.

8Note that no truly “empty” messages are sent: all messages sent contain some content. Therefore, it
may be helpful to think of the “Empty” label as “Junk” based on the complement set of messages already
described.
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Figure 4: Types of messages sent across all treatments, omitting skipped messages.
Note that ≈ 1/3 of B’s in the sample opted to skip sending a message.

Messages that assure player B will choose ‘Roll’ or ask player A to choose ‘In’ result in the

highest frequency of A choosing ‘In’. We expect messages classified as ‘empty’ to elicit similar

responses from A as cases where B opts out of sending any message, as both situations lack

any substantive signal of B’s intentions or trustworthiness. However, our data show trustors

choose ‘In’ more frequently when receiving an empty message (37.03%) than no message

(25%). Several of the empty messages are disconnected from the experiment itself but contain

relatively positive language.9 It may be the case that sending a positive message can help to

establish trust even if the message is irrelevant to the game.

Messages categorized as ‘fairness’ and ‘anti-promises’ share similar purposes but differ in the

signals they convey. Fair messages explicitly encourage A to choose ‘Out’ by presenting it

as the safest option, while anti-promises discourage choosing ‘In’ by disclosing B’s intent to

choose ‘Don’t Roll’. As anticipated, both types of messages elicit the lowest in-rates across

all pairs. Notably, no trustors chose ‘In’ after receiving an anti-promise, underscoring the

strong deterrent effect of such messages.

Hypothesis 3 postulates that Player B will send more promises when they have access to

9For example, one message contained “Hey, I hope we have a good game (:”
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Figure 5: Distribution of player choices by message classification.

an AI assistant. Our data show a 75% increase in the proportion of messages containing

promises when B gains access to AI (p = 0.067). Expanding the notion of a promise to

include ‘asking’ increases statistical significance to the 97-percent level.10 Specifically, our

95-percent confidence interval indicates the presence of AI for Player B yields a 1.83 to 34.8

percentage point increase in messages categorized as ‘promise’ or ‘asking’. Figure 6 displays

these findings visually.

Message Method

As opposed to message type, which concerns the content of the message, message method

concerns the authorship of the message. Since player B may edit the message suggested by

the AI before sending it to player A, we aim to discern whether the content of the message

was primarily dictated by AI, by the agent, or by a reasonable mix of the two. We use a

normalized version of the Levenshtein edit distance (Levenshtein et al., 1966) to determine

the pairwise relative distances between player B’s first message, the AI’s suggested message,

10We consider ’asking’ alongside ’promise’ as to include any message which directly suggests that player A
play ‘In’, opening up the possibility for a cooperative outcome.
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Figure 6: Left panel: proportion of messages sent by player B which are promises. Right panel: proportion of messages sent by
player B which are promises or asking.

and the actual sent messages11. When plotting the normed Levenshtein distance between

the the first and sent messages against the AI-suggested and sent messages (Figure A.3 in

the appendix), a clear grouping structure can be seen. To verify this grouping structure,

we implement a k−means cluster classification with k = 3 means12 to produce the labeling

assignment. Each member of the research team independently inspected each message to

ensure accurate labels. The upshot is that sent messages which are labelled ‘Own’ have

near-identical similarity to the first messages player B sent compared to the AI’s suggested

message; sent messages labelled ‘AI’ have near-identical similarity to the AI’s suggested

message compared to the first message player B sent, and ‘Mixed’ messages player B sent are

those which bare a fair similarity to both the first and the AI-suggested message. Further

details can be found in the appendix.

Figure 7 shows the breakdown of how B players sent their messages, provided that they sent

one at all. The majority of sent messages are primarily their own compositions, with near

equal shares of messages being crafted entirely by the AI or a mix of AI and player B. It

should be noted that both Figure 7 and Table 3 are restricted to treatments when player B

11The Levenshtein distance is a metric which reports the total number of single-character edits needed to
transform one string into another. In particular, the distance measures the number of insertions, deletions,
and substitutions required to transform one of its inputs into the other. We implement a normed version of
this metric, which scales the traditional Levenshtein distance between two strings by the length of the larger
string. This transforms the metric into a measure of similarity between the two strings lying between 0 and 1,
as the maximum length of the two input strings is exactly the maxmium number of single-character edits
needed to transform one string into the other.

12See Appendix A.2.2 for details.
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has an AI assistant.

Figure 7: Over half of player B’s who sent a message did so using mostly their own authorship.
Details of how these methods were imputed are included in the appendix.

Further examination of the effect of AI’s usefulness in message composition reveals that

players who spend time working with, as opposed to relying upon, the AI assistant received the

best results as measured by convincing player A to play ‘In’. Figure 8 shows the interaction

between time spent creating their message and the method used to create their message.

When players spent additional time crafting their message (a proxy for effort) they are

more successful in soliciting ‘In’ from player A. This effect was magnified when the player

incorporated the feedback from the AI assistant into their message thereby creating a ‘mixed’

message. However, the same positive effect did not apply to those who relied entirely upon

the AI to create the message they sent to player A, if anything the performance of the message

decreased over time spent on the AI message.

In contrast, Player A was less likely to comply with Player B’s request the longer they waited

for the message, as shown in Figure 9. As the wait time increased, Player A was more inclined

to choose ‘In’ when Player B asked them to play ‘Out,’ and more likely to choose ‘Out’ when

Player B requested ‘In.’

Figure 10 shows the distribution of player choices by method across the four treatment groups.
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Figure 8: Comparison of Player A’s choice versus the time in seconds they waited for Player B’s
message, categorized by Player B’s message delivery method. Without an interaction term, time spent
waiting significantly increased the probability (p = .03) that players would choose ‘In’.

Without AI assistance, Player B can either opt not to send a message or compose their

own. Consistent with earlier results, player A selects ‘In’ at a relatively low rate of 25% in

the absence of any message. When the treatments allow Player B to send messages that

are either partially or completely generated by AI (‘Only B’ and ‘Both’), these AI-assisted

messages result in unexpectedly lower ‘In’ rates: 44.4% for ‘mixed’ messages and 36.4%

for fully AI-authored messages, in contrast to 54.5% for original messages. These findings

indicate that the authorship of the message may not influence Player A’s decisions as much

as the actual content of the message.
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Figure 9: Comparison of Player A’s choice versus the time in seconds they waited for Player B’s
message, categorized by the choice Player B requested Player A makes.

Figure 10: Distribution of player choices across treatments by message authorship.

Combining message type with message method, Table 3 displays raw counts of the types of

messages player B sent and how they sent them.
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Message Type Own Mixed AI Total
Promise 9 6 6 21
Asking 0 1 2 3
Empty 9 1 1 11
Fairness 4 1 0 5
Anti-Promise 0 0 2 2
Total 22 9 11 42

Table 3: Summary of the number of non-skipped messages sent by player B according to their
type (row) and method (columns). Treatment is restricted to cases when player B has an AI.

To test Hypothesis 4, we group messages containing a promise to choose ‘Roll’ according to

whether they are authored by Player B or suggested by AI. Our findings indicate that Player

B fulfills their promise 85.7% of the time when sending their own message. In contrast, the

follow-through rate drops to 40% when the promise is suggested by AI. This decrease suggests

using AI to communicate promises may lower the cost of breaking a promise. Despite these

findings, given the p-value of 0.137, our study lacks the statistical power to reject the null

hypothesis decisively.

Interestingly, there is a significant (p = .07) relationship between the time it took Player B

to send their message and choosing which action to play and their choice between ‘Roll’ and

‘Don’t Roll’, as shown in Figure 11. The longer it took for Player B to make their decision

after sending a promising message that they would play ‘Roll’, the less likely they were to

follow through with their promise.

3.2.2 Player A

Message classification for player A’s AI is naturally less intensive:13 when player A has an

AI, we classify the interpreted message on behalf of the AI14 as either “no clear suggestion”,

“strongly advises playing ‘In’”, “weakly advises playing ‘In’” and “primarily advises playing

‘Out’.”15 In the appendix, we collapse the strong/weak ‘advise-In’ into a single label for a

13Indeed, much of the time, A’s AI addresses player B’s message, reviews the potential outcomes of the
game, and advises player A to play according to their own risk preferences.

14This was done by each member of the research team independently by hand for all messages, and these
independent labels were compared and contrasted until unanimity was reached for each message label.

15Our data on A’s AI messages is absent from the notion of a ‘strong’ v. ‘weak’ suggestion of ‘Out’.
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Figure 11: Comparison of Player B’s choice versus the time they took to make their choice after
sending their message, categorized by Player B’s signal of what choice they would make.

symmetric assignment. Furthermore, explicit examples of player B’s sent message and the

corresponding interpretation from player A’s AI can be found in panels (a)-(e) of Figure A.5

in the appendix.

Figure 12 shows the suggestions made by player A’s AI compared to the choice which player A

ultimately made in the game. Proportionally, it seems that player A closely follows the advice

of their AI assistant when the assistant suggests ‘Out’. On the other hand, this suggestion is

the least frequent of the three in the sample, with only 18% of AI suggesting that player A

chooses out.

Why do we see such a small proportion of AI suggesting ‘Out’? Figure 13 displays the

suggestions made by player A’s AI, this time alongside the type of message that player B

sent. Recall that an assignment of ‘fairness’ indicates that player B made no mention of their

own move, rather they simply request that player A choose ‘Out’. When player B sends a

message of this type, player A’s AI is almost guaranteed to advise similarly.
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Figure 12: Player B’s message type and the associated interpretation by player A’s AI.

4 Conclusion

This study investigates the impact of AI assistance on trust-building in a two-player trust

game. Specifically, we examined scenarios where either the trustor, the trustee, or both were

assisted by AI in their decision-making processes. Our primary findings reveal that while AI

assistance does not significantly alter individual choices, it does foster cooperative outcomes

by coordinating cooperative trustors and trustees. This demonstrates that AI may help foster

trust, but in a limited way. Individuals and organizations should cautiously leverage AI tools

to assist in communications, particularly in contexts where trust is paramount.

An interesting next step is to run the same treatments where participants are unaware that

their adversaries are assisted by AI. We anticipate that the nuances created by AI within

communications will significantly impact this scenario, as it removes the initial skepticism

participants may have about AI involvement. Another direction that is worth exploring is

to run the same treatments with human assistants and compare them with those with AI

assistants. Comparing AI and human assistants will enable us to assess the potential of AI

to replace human roles in the workforce and to identify advantages and limitations of AI
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Figure 13: Player B’s message type and the associated interpretation by player A’s AI.

assistance versus human assistance.16 The evidence we have gathered suggests that AI is

not yet ready to fully replace humans, but the use of AI can enhance a human’s ability to

communicate and foster trust. Future studies should also explore the long-term effects of AI

assistance on trust development. Understanding how trust evolves over repeated interactions

and whether initial skepticism diminishes over time can provide valuable insights for both AI

development and its applications in trust-sensitive environments. Finally, the advancement

of AI technology can significantly influence the effectiveness of AI assistance. Capraro et al.

(2023) shows that GPT-4 tends to consistently overestimate human altruism, which may

result in biased communication in scenarios like the trust game we study. In the current

experiment, GPT-3.5-turbo is being utilized, and it would be valuable to conduct new sessions

to compare its performance with GPT-4.

References

Acemoglu, D. (2022): “Harms of AI,” in The Oxford Handbook of AI Governance, ed. by

J. B. Bullock, Y.-C. Chen, J. Himmelreich, V. M. Hudson, A. Korinek, M. M. Young, and

16Cvetkovic et al. (2024) conduct a survey experiment and find that people in Finland exhibit greater trust
in humans than in AI when it comes to performing assistance-related tasks at work.

25



B. Zhang, Oxford University Press.

Aher, G., R. I. Arriaga, and A. T. Kalai (2023): “Using large language models to

simulate multiple humans and replicate human subject studies,” in Proceedings of the 40th

International Conference on Machine Learning, JMLR.org, ICML’23.

Argyle, L., E. Busby, N. Fulda, J. Gubler, C. Rytting, and D. Wingate (2022):

“Out of One, Many: Using Language Models to Simulate Human Samples,” arXiv preprint

arXiv:2209.06899.

Bai, L., Z. Gui, L. Wei, and L. Xue (2023): “Strategic Interactions with an Algorithm

Assistant: The Power of Data and Mechanism,” SSRN working paper no. 4286568.

Bauer, K., L. Liebich, O. Hinz, and M. Kosfeld (2023): “Decoding GPT’s Hidden

‘Rationality’ of Cooperation,” SAFE Working Paper No. 401.

Brand, J., A. Israeli, and D. Ngwe (2023): “Using GPT for Market Research,” Available

at SSRN 4395751.

Brookins, P. and J. M. DeBacker (2023): “Playing Games With GPT: What Can We

Learn About a Large Language Model From Canonical Strategic Games?” Available at

SSRN: 4493398.

Brown, J. R., A. J. Cookson, and R. Heimer (2019): “Growing up without Finance,”

Journal of Financial Economics, 134, 591–616.

Brown, T., B. Mann, N. Ryder, M. Subbiah, J. Kaplan, P. Dhariwal, A. Nee-

lakantan, P. Shyam, G. Sastry, A. Askell, et al. (2020): “Language Models

are Few-Shot Learners,” in Advances in Neural Information Processing Systems, vol. 33,

1877–1901.

Bybee, L. (2023): “Surveying Generative AI’s Economic Expectations,” arXiv preprint

arXiv:2305.02823.

Capraro, V., R. DiPaolo, and V. Pizziol (2023): “Assessing Large Language Models’

ability to predict how humans balance self-interest and the interest of others,” PsyarXiv

preprint.

26



Capraro, V., A. Lentsch, D. Acemoglu, S. Akgun, A. Akhmedova, E. Bilancini,

J.-F. Bonnefon, P. Brañas-Garza, L. Butera, K. M. Douglas, J. A. C. Ev-

erett, G. Gigerenzer, C. Greenhow, D. A. Hashimoto, J. Holt-Lunstad,

J. Jetten, S. Johnson, W. H. Kunz, C. Longoni, P. Lunn, S. Natale, S. Paluch,

I. Rahwan, N. Selwyn, V. Singh, S. Suri, J. Sutcliffe, J. Tomlinson, S. van der

Linden, P. A. M. Van Lange, F. Wall, J. J. Van Bavel, and R. Viale (2024):

“The impact of generative artificial intelligence on socioeconomic inequalities and policy

making,” PNAS Nexus, 3, 191.

Charness, G. and M. Dufwenberg (2006): “Promises and Partnership,” Econometrica,

74, 1579–1601.

Chen, D. L., M. Schonger, and C. Wickens (2016): “oTree—An open-source platform

for laboratory, online, and field experiments,” Journal of Behavioral and Experimental

Finance, 9, 88–97.

Chen, L. and R. Ng (2004): “On the marriage of lp-norms and edit distance,” in Proceedings

of the Thirtieth international conference on Very large data bases-Volume 30, 792–803.

Chen, M., J. Tworek, H. Jun, Q. Yuan, H. Pinto, J. Kaplan, H. Edwards,

Y. Burda, N. Joseph, G. Brockman, et al. (2021): “Evaluating Large Language

Models Trained on Code,” Working Paper.

Chen, Y., T. X. Liu, Y. Shan, and S. Zhong (2023): “The Emergence of Economic

Rationality of GPT,” Proceedings of the National Academy of Sciences, 120, e2316205120.
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A Appendix

A.1 Levenshtein Distance

The Levenshtein Distance (Levenshtein et al., 1966) is a way of measuring string distance

according to the number of insertions, deletions, and substitutions needed to convert one

string to another. Formally, given a string str, let head(str) represent the first character of

the string and tail(str) the string with the first letter (the head) removed. Then, given two

strings a and b, the Levenshtein(LV) distance between a and b is given by

lev(a, b) =



|a| if |b| = 0,

|b| if |a| = 0,

lev
(
tail(a), tail(b)

)
if head(a) = head(b),

1 + min


lev

(
tail(a), b

)
lev

(
a, tail(b)

)
lev

(
tail(a), tail(b)

) otherwise

The maximal LV distance between two strings is equal to the absolute length of the longer

string. We use this as the basis for our normalization17. Though nLV is not a metric in

it’s own right – unlike the LV distance – the nLV is still a measure of string similarity, as

an nLV of 0 represents no similarity, and an nLV value of 1 represents exact similarity. In

between, the measure corresponds to the similarity of two strings according to their potential

similarity.

17For background on edit distances and their normalizations, see, for instance, Marzal and Vidal (1993),
Chen and Ng (2004), Kondrak (2005).
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A.2 Message Classification

A.2.1 Message Type

Figure A.1: Diagram depicting the classification of Player B’s messages, with an example
below.

Panels (a) – (e) of Figure A.2 show examples of the transformation from Player B’s first

message to the AI, the AI’s response, and the message which player B actually sends.

(a) Sometimes, player B’s AI does a reasonable job formalizing B’s message to be sent to player A, but player B
completely ignores the modifications made by the AI and sends their original message (or a similar message).

(b) Here, the AI takes player B’s promise, but ultimately suggests an ‘Asking’ message. While player B ignores the AI’s
suggested message, it seems to encourage player B to write something more verbose in the end.

Figure A.2
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(c) Player B sends a message which is incompatible with the rules of the game. They then go on to full adopt their AI’s
suggested message despite the fact that the payoffs associated with ‘Don’t Roll’ (assuming player A chose ‘In’) are not
accurate.

(d) This player B utilizes the AI to craft a whole promise to player A, which player B completely adopts.

(e) Player B’s AI assistant crafts a verbose message, which is similar in intention to player B’s original message. Note,
however, that the AI does not explicitly promise to ‘Roll’, but rather erroneously ends up stating that both players should
play ‘In’. Player B appears to catch this, extracting a subset of the AI’s message which matches their originally
communicated intentions.

Figure A.2

33



A.2.2 Message Method

Figure A.3: Each data point represents a message sent by player B. The horizontal axis
represents the string similarity (nLV) between the first message that player B sends to AI, and
the message which player B sends to player A. The vertical axis represents the string similarity
between the penultimate message suggested by AI and the actual message which player B sends
to player A. Classification is determined by a “k-means” cluster algorithm with k = 3.

Figure A.4: Left: Elbow plot showing within sum-of-squares drop-off for k = 1, . . . , 10. Right: Visualization of gap statistic for
k = 1, . . . , 10. Both methods for determining optimal number of clusters suggest k = 3.

A.2.3 Player A’s Messages

Panels (a) – (e) of Figure A.5 show examples of messages which player B sent to player A

(left) and the corresponding interpretation by player A’s AI assistant.
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(a) In this example, there is incorrect information about the game present in player B’s message; the AI interprets this
misinformation as a sign that player B is trying to deceive player A, and warns player A that the message is deceiving.

(b) An instance of the AI assistant giving bad advise to player A: despite player B’s clear intention to play ‘Don’t Roll’,
GPT advises player A to play ‘In’, justifying this advice with the claim that a payoff of 0 is better than a payoff of 7.

Figure A.5: Examples of player B’s sent message vs. the interpretation by player A’s AI assistant.
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(c) Another instance of A’s AI assistant providing absurd justification for it’s advice (10 > 7). Note that player B
indicates an intention to play ‘don’t roll ’, so the prescriptive advice from the AI does in fact work out in A’s favor, in this
case.

(d) This example highlights an instance of the “weakly suggests ‘In’” label. While A’s AI initially suggests ‘In’, it
subsequently advises that player A be cautious and “not blindly trust player B”.

Figure A.5
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(e) Player B sends a message which does not make sense within the context of the game (as both players cannot play
‘Don’t Roll’). Rather than catching this error, this message seems to confuse player A’s AI. This AI assistant takes on a
fairly cautious tone, even suggesting that player B may be trying to manipulate player A.

Figure A.5

A.3 AI Prompts

A.3.1 Player B’s AI Prompts

As an advisor, you are assisting Player B (the user) in a 2-player game. Here’s what you

need to know:

- Player B may address Player A in their message, not you, the advisor.

- Your role is to ensure Player B is clear about their role in the game and to help them

craft a persuasive message to Player A.

- The goal of the message is to maximize Player B’s payoff.

- Player B has the opportunity to send one message to Player A before the game starts.

Player A can not respond or send a message back to Player B.
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Here are the rules of the game:

- Player A must choose between ‘In’ and ‘Out’.

- Player B then chooses between ‘Roll’ and ‘Don’t Roll’.

- If Player A picks ‘In’ and Player B picks ‘Roll’, Player A gets an expected payoff of 10

and Player B gets a payoff of 10.

- If Player A picks ‘In’ and Player B picks ’Don’t Roll’, Player A gets a payoff of 0 and

Player B gets a payoff of 14.

- If Player A picks ‘Out’, both players get a payoff of 7, regardless of Player B’s choice.

If the user’s message doesn’t make sense (e.g., they seem to believe they are Player A or

the message is nonsensical), ensure they understand their role as Player B. If the user seems

aware of their role as Player B, this is not necessary.

Regardless of the user’s original message, you must provide a suggested or revised message

for Player B to send to Player A. You must prepend the message with a colon and wrapped

it in double quotes as I will use the string ‘: “ ’ to identify it.

Note: You cannot suggest signing contracts, engaging in additional discussions, or revealing

the players’ identities. The game is supposed to be anonymous.

A.3.2 Player A’s AI Prompts

As an advisor, you are assisting Player A (the user) in a 2-player game. Here’s what you

need to know:

- Player B has the opportunity to send one message to Player A before the game starts.

Player A can not respond or send a message back to Player B.

Here are the rules of the game:

- Player A must choose between ‘In’ and ‘Out’.

- Player B then chooses between ‘Roll’ and ‘Don’t Roll’.
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- If Player A picks ‘In’ and Player B picks ‘Roll’, Player A gets a payoff of 12 with

probability 5/6 and a payoff of 0 with probability 1/6. As such, Player A gets an

expected payoff of 10 if Player B picks ‘Roll’ and Player B gets a guaranteed payoff of

10.

- If Player A picks ‘In’ and Player B picks ’Don’t Roll’, Player A gets a payoff of 0 and

Player B gets a payoff of 14.

- If Player A picks ‘Out’, both players get a payoff of 7, regardless of Player B’s choice.

Player A will send to you the message Player B sent to them.

Your job is to help Player A interpret the message Player B sent and to advise Player A on

what to play given the message received.

Your goal is to help Player A maximize their payoff.

A.4 Experiment Instruction
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Figure A.6: Experiment Instruction - Both players have AI.
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